Tag Archives: Lee

REL0ADERS CORNER: Reloading Presses: Options

A very “busy” reloader might consider a turret press to save on time. Read all about why HERE

turret press

Glen Zediker

Last time I wrote about the most basic and essential of all reloading tools: the single-stage press. They come in a few shapes and all sizes. Which you choose, as said, has much to do with how much leverage you need to perform the toughest operations you face on the loading bench.

Beyond size, however, there are other options in a press, and some might suit your needs best. The first that comes to mind is a turret. I’m a fan of turret presses, and for reasons that will be pointed out throughout this article.

turret press
This is a honker of a press and it’s well worth the cost. Lyman Brass-Smith. 8 station ops. And it’s actually on sale now at Midsouth so I have to back up on telling you turrets always cost more! CHECK IT OUT HERE

First, a turret is, pretty much, a single stage press that has more than one receptacle for threaded dies. Instead of threading in and out each separate die for each separate operation, just leave them in the tool head. The head on a turret press can be moved to center each die receptacle over the press ram.

turret press
Redding T-7 has been a long-time “standard” for a big turret, and that’s because it’s stout! Very heavy, very sturdy, and 7 stations. Cast iron. SEE IT HERE

turret press redding

Some turret presses are on the very heavy duty end of the press spectrum. Others not so much. A “big” Lyman, Redding, or RCBS turret press can hold enough dies to load different cartridges without changing heads, or dies. Lyman offers 8 holes, Redding 7, and RCBS has 6. If you’re using only a sizing and seating die, as might most for loading rifle rounds, you can handle more than two different cartridges without ever threading in or out a die. That, to me, is a valuable thing. The dies stay adjusted and, no doubt, either of those presses has more than plenty leverage to handle any and all sizing, reforming, and any other press ops.

Lock-N-Load AP Auto Progressive Press

Take a tour of all available reloading presses at Midsouth Shooters HERE.

The ultimate value in a turret, in my mind, is getting one that allows for straightforward tool head swaps. That way you can leave all the (adjusted) dies in the tool head and when it’s time to change cartridges, remove the head and replace it with another that also houses the necessary adjusted dies. My choice in turrets, therefore, runs on the smaller-bodied side of available options. I prefer to keep all the dies for one cartridge in one head. To that end, a 3 or 4 hole turret fits my bill. The most popular and easily available is from Lee, and I’ve used one of those for years for case forming ops. I put all the needed dies for a cartridge conversion — forming dies, trimming die — in the turret head and shuck away, moving from station to station as needed.

I have known folks who used a turret press pretty much as a “manual-automatic” progressive, and auto-indexing can be incorporated into a Lee. Crank the handle, move the turret head one hole, crank again, move the head again, and so on. That’s not my way to run one. A true progressive press is way on better if you’re looking to speed up the overall loading process. Again, turrets help us move faster because we don’t have to stop and re-up the tooling for each case operation.

turret press
The Lee Classic 4-Hole Turret has been around a while and I’ve used one for a while too. I like it fine. Heads are inexpensive and really fast to change out. I am not a fan of its auto-index, but that is easily “switched off.” SEE IT HERE

I have found that running a 4-hole turret for my personal needs in loading my NRA High Power Rifle Service Rifle ammo (for an AR15) was the without-a-doubt best way to get me through the tooling tickiness I had developed in manufacturing those rounds, which was almost always done the night before. For that rifle and that venue, I used two different bullets and two different case neck dimensions (lighter constriction for the 600 yard load) so I ran a sizing die, which was set the same for all rounds; then an inside neck sizing mandrel to alter the case neck tension; then one seating die set for 77gr. magazine-length rounds and another set for 80gr bullets. That setup occupied the 4 holes I had available in my turret head. I saved a lot of time with this setup. The dies stayed put and therefore never a worry about consistency use to use. I did index-reference all the dies using a paint marker so I could see if anything had inadvertently rotated.

turret press harrells
This is my most-used press: Harrells 4-Hole Turret. This is a small-shop precision made machine and hain’t nearly cheap. It clamps just about anywhere and can be either a 2, 3, or 4 hole depending the head plate. SEE ONE HERE

Other ideas on making full use of a turret include incorporating one of the threaded-type priming tools (such as Lee Ram Prime) or even a powder meter station (using a meter with 7/8-14 threads). Clearly, turrets are great for pistol shooters who need sizing, expanding, seating, and often a separate crimping station.

I honestly am really tempted to wholesale recommend a turret press to anyone who’s got to deal with any or certainly many of the benefit potentials mentioned. Loading for more than one cartridge, needing more than a couple of dies, and so on. Only trick is that a turret press is going to cost more money. Making a play on the old hot-rodder adage: Speed costs money, so how fast do you want to spend? Time also can cost money, and how much do you want to save? If time is more valuable to you, by all means get a turret.

turret press

And, last, even though it’s always important to keep any press cleaned and lubed, it’s even more so with a turret.

The preceding is a adapted from information contained in from Glen’s books Top-Grade Ammo and Handloading For Competition. Available HERE at Midsouth Shooters Supply. Visit ZedikerPublishing.com for more information on the book itself, and also free article downloads.

RELOADERS CORNER: 3 Helps For Easy Load Work-Ups

Read this before you start the process of working up a load for your new rifle! It could save you huge amounts of time and money… Find out more!

Glen Zediker

Spring is around the corner. Well, if you walk way out into the street and squint really hard you can at least think you see it… Well it’s coming soon enough, at least, now’s a good time to get ready.

I never have been big on the personal value of published load data. The data I’m referring to is that from propellant and other component manufacturers, and also from articles done by independents. I think all such information, at most, provides a place to start, and it also gives some ideas on tendencies and cautions, and provides means for comparisons. But. I don’t think it can be taken straight to the loading bench with any guarantee of success, or of attaining “advertised” performance. And I say that not because I don’t think these folks don’t know what they’re doing. They do! It’s because, after way more than enough experience in proving myself right, I can tell you absolutely that their rifle is not your rifle! Neither, necessarily, are their propellant, primer, case, or bullet. Always take careful note of the barrel and components used for any published test data, and compare them to yours. In later comparisons of my notes with published data, sometimes I’m higher, often times I’m lower, and enough times I’m way lower… That’s the main concern there.

It’s not at all difficult to learn to develop your own loads, to essentially write your own loading manual.

To do this efficiently, you need to learn to load at the range. Right, right there near to where you’re testing. An unremarkable investment in a few tools and a little creativity can provide a way to take your show on the road.

Lee press mounted outdoors
You don’t have to invest a fortune to take your show on the road. A C-clamp and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine). One clamp is adequate on the press since bullet seating is all in the “down” direction and not much force is needed.

The reason to do this is because it provides a way to precisely chart results. It’s a more reliable and accurate way to proceed. Otherwise, the option is to load varying charges at home and then see what happens at the range. That’s okay, but not nearly as good as on-the-spot experiements. Plus, you won’t have left over partial boxes of poor-performing rounds. It’s more economical and way on more efficient.

The preparation part, and this is what you might spend the remaining cold month or two working on, is, first, to get the tooling ready and, second, and most important, to start making notes on your powder meter.

Important: To be able to work up at the range, it’s mandatory that you’re using a meter that has incremental adjustment. Either a “click”-type “Culver”-style insert or, at minimum, a micrometer-style metering arm. You’ll be relying on the meter, not scales, to progress upward in propellant charges, and you absolutely have to know what the values are for each increment using the different propellants you plan to test. That is where you’ll be spending time prior to doing your homework. It’s well worth it! It can be a nightmare trying to get scales to read accurately outdoors, including the digital type.

Harrells meter mounted outdoors
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tool box.
Harrells meter close up
This is a Culver insert. It’s a huge help in following this process. It’s precise and repeatable.

Equipment List and Set-Up
When I need to do load work, I size, prep, and prime new cases and put them in a cartridge carrier (usually a 100-round box). I then pack up my little press, seating die, my meter, some cleaning gear, C-clamps, and my propellants. The press and meter and cleaning gear go in a tool box. I usually carry the propellants in a picnic-type cooler. And, very importantly, my chronograph. A notebook, some masking tape, and a sack lunch… I might be there a while.

Always (always) use new cases for load work-up.

When I get to the range, I’ll clamp-mount my press and meter to a bench, get out all the rest, and set up the chronograph. Take a target downrange and tack it up. I test at 300 yards, unless the load is intended for shorter-range use. I initially test longer-range loads at 300. Maybe I’m lazy, but longer-range testing is a tad amount more tedious. I’ll come back for that after I have a contender or two.

Working Up The Load:
The reason it’s a “work-up” is clear enough: we’re almost always looking to get the highest velocity we can, safely. High velocity, or higher velocity, is usually all-good. Shorter flight time means less bullet drift and drop, and a harder hit.

So working up means increasing propellant charge until we’re happy: happy with the speed and also that the cases will still hold water. (And more about that next time…)

blown primer
Keep track of the cases in the order they were fired. This helps later on when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxfull of those chamber bombs to take with me, and that’s the beauty of loading right at the range.

Very important: it is vitally necessary to have established a goal, a stopping point, prior to testing. That is one of the functions of published data. That goal is bound to be velocity, not charge weight. And that, right there, is why you’re working up at the range: you want to get “advertised” velocity and need to find the charge weight that produces it.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading an unuseably low velocity on the initial trial. Since my meter has a “Culver”-style insert, which I trust completely, I reference its number of clicks in my notes rather than the grain-weights (a Culver works like a sight knob, and reads in the number of clicks, not the weight itself). I check the weights when I get back, and I do that by clicking to the settings I found delivered, and then weighing the resultant charges. Otherwise, just throw a charge into a case and cap it with masking tape (clearly labeled).

It’s not necessary to fire many rounds per increment. “Mathematically” 3-5 rounds is a stable enough base to reckon the performance of one step. Of course, I’ll be shooting more successive proofs-per-trial once I get it close. Some folks, and especially competitive shooters, wear out a barrel testing loads. That’s not necessary.

Here are 3 things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy and velocity.

2. Replace the cases back into the container in the order they were fired. This allows for accurate post-test measurements. Use masking tape and staggered rows to label and identify the steps. I use 100-round ammo boxes because they leave enough space for the tape strips.

3. Go up 0.20 grains but come off 0.50 grains! If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Check out chronographs HERE
Take a look at suitable meters HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

RELOADERS CORNER: The Priming Process

Priming is the final case preparation step, and it’s one of the most important. Read how to do it right.

Glen Zediker

There are pretty much three different style tools used to seat primers.

The first, and way on most common, is the priming “arm” attached to most every single-stage press. This works, but it’s the least best way to do it. There’s too much leverage at hand, and that makes it hard to feel the seating process to its best conclusion.

Take a close look at how a primer is constructed: there’s a cylindrical cup, inside the cup is the incendiary compound, and then there’s the anvil (that’s the little part that extends below the cup rim; it’s like a flat spring with three feet).

rifle primer close up
Take a close look at a primer. The anvil is the tripod-shaped thin metal piece protruding above the bottom of the primer cup. Getting the primer sitting fully flush on the bottom of the primer pocket in the case, without crunching it too much, requires some keen feel for the progress of primer seating, and that’s where the stand-alone tools come in to help. I strongly suggest using one.

Ideally, a primer will seat flush against the bottom of the primer pocket, with compression, equally of course, against the anvil. Also ideally, there should be some resistance in seating the primer (if there’s not then the pocket has expanded an amount to cause concern, and a rethink on the suitability of reusing this case, and its brothers and sisters).

If it has to be a choice, even though it doesn’t have to be, it’s better to have “too much” seating than not enough. The primer cannot (cannot) be left too “high.” That’s with reference to the plane of the case head. There are both safety and performance concerns if it is. First, if the primer is not seated snugly to the bottom of its pocket, then the firing pin will finish the job. No doubt, there will be variations in bullet velocities if this happens because it affects ignition timing.

Each and every loaded round you ever create needs to be checked for this. Every one. Get in the habit of running your finger across the case bottom and feeling a little dip-down where the primer is. Look also. Rounds loaded on a progressive machine are susceptible to high primers. The reason is no fault of the machine but rather because the feel or feedback is that much less sensitive than even when using a press-mounted priming arm. If there are a half-dozen other stations on a tool head in operation at once, then the one doing the priming is that much more obscured from feel. And also because we’re not usually able or willing to inspect each finished round as it emerges from the rotating shell plate. But do check afterwards as you’re filing the loaded rounds away into cartridge boxes. Much more to be said ahead on this topic next edition.

correctly seated primer
Check each and every (every last one always) primer you seat to make sure it’s below flush with the case head.

The better priming tools have less leverage. That is so we can feel the progress of that relatively very small span of depth between start and finish. There is also a balance between precision and speed in tool choices, as there so often is. Also, so often, my recommendation is one that hits the best balance.

The press-mounted primer arm styles exhibit variations from maker to maker, but they’re all about the same in function. What matters most in using a press seater is going slowly and double-checking each and every result. Again, it’s the lack of feel for the progression of the primer going into the pocket that’s the issue.

press priming arm
Here’s the most common means for seating primers: the attached arm assembly on most single-stage presses. It’s tough to really feel the primer seat correctly because there’s a honking lot of leverage at work.

The best way to seat primers, or I should say the means that gives the best results, are the “hand” tools. They are also a little (okay, a lot) tedious to use, and, for me at least, aren’t kind to my increasingly ailing joints after priming a large number of cases. Those types that have a reservoir/feeding apparatus are less tedious, but still literally a pain. The reason these type tools give the best results is that they have poor leverage. The first few times you seat with one, you’ll be amazed at just how much pressure you need to apply to fully seat a primer.

LEE hand priming tool
Here’s a “hand” tool. This one from LEE works plenty well, despite its low cost. There are others similar from most major makers. The whole point to these designs is absence of leverage. Check it out HERE at Midsouthl

The best choice, in my book, are the benchtop stand-alone priming stations. They are faster than hand tools, and can be had with more or less leverage engineered into them. I like the one shown nearby the best because its feeding is reliable and its feel is more than good enough to do a “perfect” primer seat. It’s the best balance I’ve found between speed and precision.

Forster Co-Ax priming tool
Here’s a Forster Co-Ax bench-mounted tool. It’s a favorite. It provides relatively low leverage for better feel for the progression of primer seating.

Forster Co-Ax priming tool

Get a good primer “flip” tray for use in filling the feeding magazine tubes associated with some systems. Make double-damn sure each primer is fed right side up (or down, depending on your perspective). A common cause of unintentional detonation is attempting to overfill a stuffed feeding tube magazine, so count and watch your progress.

RCBS APS
Another good one is available from RCBS, the APS. Check it out HERE at Midsouth.

It’s okay to touch primers, by the way. Rumors abound that touching them with bare fingers will “contaminate” the compound and create misfires. Not true. All the primers I’ve ever used, and all those anyone else is likely to encounter, are treated to a sealant. Now, a drop of oil can penetrate the compound and render it intert, but not a fingerprint.

The priming process, step-by-step is almost too simple to diagram. Place a primer anvil-side-up in the device housing apparatus, position a case, push the primer in place. It’s learning feel of the whole thing that takes some effort. As mentioned, using a tool with poor leverage, you might be surprised how much effort it takes to fully seat a primer. On anything with an overage of leverage, there’s little to no sensation of primer movement into the pocket. It just stops.

TWO DONT’S:
Don’t attempt to seat a high primer more deeply on a finished round. The pressure needed to overcome the inertia to re-initiate movement may be enough to detonate it.

Don’t punch out a live primer! That can result in an impressive fright. To kill a primer, squirt or spray a little light oil into its open end. That renders the compound inert.

ONE (BIG) DO:
Keep the priming tool cup clean. That’s the little piece that the primer sits down into. Any little shard of brass can become a firing pin! It’s happened!

See what’s available here at Midsouth HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

Ultimate Reloader: .25-45 Sharps AR-15 Part 6: LEE .25-45 Sharps Dies Overview

By Gavin Gear, Ultimate Reloader

lee .25-45 sharps dies

One of the challenges with picking up a “new” cartridge to reload is finding the right dies at the right price. .25-45 Sharps is becoming more popular with AR-15 shooter and reloaders, and the industry is responding with new products that give reloaders more options. One such example is the new .25-45 Sharps dies from LEE. This “Pacesetter” die set includes a full-length sizer/de-primer, a dead-length bullet seater, and a Factory Crimp Die- everything you need to form .25-45 Sharps brass and reload .25-45 Sharps ammunition for your AR-15. These dies are “Very Limited Production” – but I’ll note that Midsouth Shooters Supply has these dies for ~$35. and they are in stock as of today! That’s about 1/2 what other .25-45 Sharps die sets cost!

If you are curious about LEE rifle dies, I posted an in-depth write-up that covers pretty much every detail you can think of. I also posted the following in-depth write-up that covers .25-45 Sharps precision reloading from start to finish, a great resource if you are going to use these LEE dies to load .25-45 Sharps:

.25-45 Sharps AR-15 Part 5: Precision Loads with the MEC Marksman

As noted in that article, I found once again when testing the LEE dies how critical it is to chamfer case mouths after forming brass as pictured here:

time to chamfer and debur!

The cartridges I loaded with the LEE dies turned out great, and of course I tested my sizing/forming die setup with my L.E. Wilson case gage to make sure dimensions were correct.

time to break out the l.e. wilson gauges

I can’t wait to shoot some of the ammunition loaded with these LEE Pacesetter .25-45 Sharps dies- I’ll keep you all posted with how they work out!

Thanks,
Gavin

Load Testing Insight: 5 “Rules” for Load Work-Up

Don’t waste time and money collecting half-boxes of “loser loads.” Here’s how to start and finish load work-up in one day.


Glen Zediker


Last time I talked a little about keeping your ammo pressure-safe, under a range of conditions. Quite a bit of that dealt with observations made during load work-up. So this time I’d like to talk more about the work-up process I use.

The reason for the term “work-up a load” is pretty clear: we’re almost always looking to get the highest velocity we can, safely. High velocity, or, more clear, higher velocity, is usually all good. Shorter time of bullet flight to the target means less drop and drift, and a harder impact.

So working up means increasing propellant charge incrementally until we’re happy. Happy with the velocity or happy that the cases are still able to hold water. Ha. As said last time, it’s vitally and critically important to have a stopping place, a goal to be reached, prior to testing.

I also mentioned an “incremental” load work-up method that I have followed for many years, and it’s served me very well. I do all my testing and work-ups at the range. I load right then and there. I take boxes of sized and primed cases, and my Harrell’s powder meter, and a small press that I c-clamp to a bench. The press, of course contains my seating die. And the most important pieces of gear are a notebook and a chronograph.

load at the range
You don’t have to invest a fortune to take your handloading show on the road. Some c-clamps and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine).

Before the trip, I have taken the preparation time, done the homework, to know exactly how much “one click” is worth on my meter. It varies with the propellant, but by weighing several examples of each click-stop variation (done over at least 4 stops) I can accurately increase the charge for each test a known amount.

reloading at the range
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tackle-type box.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading a low velocity initially. Since I have a meter with a “Culver” insert, which I trust completely, I actually reference the number of clicks in my notes rather than the weights. I check after the weights when I get back home, and I do that by counting to the setting and weighing the charge. It’s easy enough also to throw a charge into a case and seal it over with masking tape.

I started loading at the range because I got tired of bringing home partial batches of loser loads. And, you guessed it, the partial boxes usually contained recipes that were too hot. The only way to salvage those is to pull the bullets. Tedious. Or they were too low, of course, and fit only for busting up dirt clods. Plus, I’m able to test different charges in the same conditions. It’s a small investment that’s a huge time-saver.

During my work-up, I fire 3 rounds per increment. As it gets closer to done, I increase that to 5. Final testing is done with 1 20-round group. Does 3-round volleys seem inadequate? It’s not if there’s confidence that the rounds are being well-directed and speed is being monitored. If I’m seeing more than 10-12 fps velocity spreads over 3 rounds, I’m not going to continue with that propellant.

Here are a few things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

  1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. Don’t know about you, but I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy (and zero).
  1. Replace the cases back into the container in the order they were fired. This allows for accurate post-testing measurements. Use masking tape and staggered rows to identify the steps. I use 100-round ammo boxes because they have enough room to delineate the progress.

    ammo pressure
    Keep track of the cases in the order they were fired. This helps later on back in the shop when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxful of those chamber bombs to take with me, and that’s the beauty of loading right at the range.
  1. Use the same target for the entire session. (Put pasters over the previous holes if you want, but don’t change paper.) This helps determine vertical consistency as you work up (when you’ve found a propellant that shows consistency over a 3-4 increment range, that’s better than good).
  1. Exploit potentials. If you take the lead to assemble a “portable” loading kit, the possibilities for other tests are wide open. Try some seating depth experiments, for instance. Such requires the use of a “micrometer” style die that has indexable and incremental settings.
  1. Go up 0.20 grains but come off 0.50 grains! Said last time but important enough to say again here. If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Last: Keep the propellant out of the sun! I transport it in a cooler.

shooting chrony
Chronograph each round you fire. It doesn’t have to cost a fortune to get an accurate chronograph. This one is inexpensive and, my tests shooting over it and my very expensive “other” brand chronograph (literally one cradled in the other) showed zero difference in accuracy. The more expensive chronographs mostly offer more functions. The muzzle-mounted chronos are fine and dandy too.

The preceding was a specially adapted excerpt from the new book, Top-Grade Ammo by Glen Zediker. Check it out at ZedikerPublishing.com or BuyZedikerBooks.com

Ultimate Reloader: LEE Pistol Dies

If we were to ask you what kind of dies you started out with, there’s a good chance you’d respond with some caliber of LEE dies. Gavin, with Ultimate Reloader, takes us back through the LEE Pistol Dies, like it’s the first time.

“My very first set of reloading dies were LEE 44 Magnum pistol dies that came with the LEE Pro-1000 press that I started out with. Since then, I’ve acquired many more sets of LEE dies ranging from 30-06 to 9mm to 45 ACP to 357 SIG and quite a few in between. LEE Pistol Dies (technically handgun dies, but I’ll use the term “pistol” to cover both autoloader and revolver here) are some of the most popular dies because of their combination of features and value. In this post, I’ll cover the different die sets that LEE offers, compare features, and I’ll even show a demonstration of setting up some dies on a progressive reloading press!”

Feel free to hit this link to check out the full article on Ultimate Reloader!

Check out Midsouth Shooters selection of LEE Dies HERE:

and watch the video from Ultimate Reloader below!

How many of you are still using LEE dies and products today?

LEE Auto Bench Priming Tool: Overview, Setup, Priming with Ultimate Reloader

There are quite a few priming tools on the market, coming in all shapes, sizes, and configurations. Our friend, Gavin, over at Ultimate Reloader took a closer look at the Lee Auto Bench Priming Tool, from the setup, to the functionality, and gives his overview of this new take on a bench standard.

“Could this be the alternative to hand priming that I’ve been looking for when I don’t choose to prime on-press?”  You can read Gavin’s full write up on the Ultimate Reloader blog HERE.

Also, check out his video on the Lee Auto Bench Priming Tool below!